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Abdract-AU the methods so far proposed for deriving enthaipycntropy relations fail lo take into consideration the 
physical reasons for implied functional dependence between the activation parameters. In order lo avoid spurious 
results it is essential to establish first the physical basis upon which the variation in the spccitic reaction rate itself 
depends, and then to carry that information through to the enthalpyzntropy plane. 

The proposals made here arc of general application for establishing valid functional enthalpy-zntropy relations, 
whatever their form, and in this context linear correlations are merely a subset. 

tNlROtWCIlON 

The effects of temperature on chemical reaction rates can 
be described either in terms of classical collision theory 
by the Arrhenius equation,’ 

k = A e-*“‘, (1) 

or according to the activation complex theory, by the 
Eyring equation, 

k=RTe- Aiv,RT b.wR 

Nil 
e . 

In these equations k is the specific reaction rate, R the 
universal gas constant and T the absolute temperature; N 
is the Avogadro number and h Planck’s constant. E is the 
Arrhenius activation energy and A the Arrhenius 
constant, while AH* is the enthalpy of activation and AS* 
the entropy of activation of the Eyriug equation. In 
practice the numerical values of the activation parameters 
are derived from the common logarithmic forms of the 
equations, 

E 
1% k = 108 A - 2,303RT’ (9 

log k = Iog$$&+&. (4) 

In this form these equations predict a linear regression 
between the common logarithm of the specific reaction 

rate and the reciprocal of the absolute temperature, 
relating E and AH* to the regression coefficient and log A 
and AS’ to the regression constant. 

With the accumulation of data in this field it emerged 
that for sets of closely related reactions differing, say, 
with respect to the chemical structure of a participating 
component, or in solvent medium composition, the 
activation parameters varied together and in the same 
sense, so that E and log A, or AH* and AS’ were linearly 
correlated. These observations were of considerable 
theoretical interest, because they appeared to provide a 
basis for inference about process mechanisms at molecu- 
lar level, and led to the generalization known as the 
isokinetic relationship, or compensation law.>’ 

The potentially Mefactual nature of such correlations 
has long been recognized,= but it was Exner’ who 
brought out their inherent deficiency, which is that E and 
log A, or AH* and AS’ are a priori mutually dependent, 
because both parameters in each pair are derived from 
essentially the same quantity, log kl/k~ where k, and kl are 
the specific reaction rates at the absolute temperatures T, 
and T2 respectively. In Exner’s view, therefore, linear 
enthalpycntropy relationships are not valid unless 
corresponding correl&tions exist between the mutually 
independent variables log kl and log k2. However, this is 
not in itself a sufficient criterion of validity because it still 
does not ihclude the physical basis of any implied 
enthalpyentropy relationship. In order to do that it is 
necessary to go back one step further and tirst establish 
the physical basis on which the variation in the specific 
reaction rate itself depends. 
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METHODS 

As Exner’ has stated, the derivation of E and log A or 
AH* and AS*, from reaction rates k, and k~ measured at 
temperatures T, and Tz (T, > T2) is equivalent to a linear 
transformation of coordinates from the plane log k, vs 
log k2 to the plane E vs log A viz. 

E = 2’3;f;2T2 (log k, -log k2f, (5) 

log A = A (log k, -g log k2). (6) 
! 2 

A linear relationship in the one set of co-ordinates must, 
therefore, correspond with a linear reIationship in the 
other. However Exner,’ Banks et af: together with the 
authors they criticise, all confuse the fitting of straight line 
regressions in a purely statistical way with the establish- 
ing of linear functional relationships. Each member of a 
reacting series has exactly one vatue of logk, and one 
value of log k2 associated with it, and, in fitting a straight 
line in the log k, vs log kt plane, it is irn~~t fo 
disti~ish between two possible situations: 

(i) If a straight line is fitted in the log k, vs log k2 plane 
simply to show a trend of one variable with the other, that 
is, a purely statistical relationship is assumed, then two 
possible regression lines, log k, on log k2 and log ki on 
log k), can be established and, as Exnei has shown, the 
images of these tines in the E vs log A plane are not 
coincident with the regression tine which can be 
established directly in that plane. 

It must be emphasised that for lines fitted in a purely 
statistical way, with no physical basis for assuming a true 
linear functional relationship in either plane, there is no 
question of a regression line in the one plane being more 
“correct” than in the other. Inte~~tation of the 
regressions must be undertaken with great care, for the 
possible a p&n’ correlations between the variables can 
lead to inevitable linear regressions. 

(ii) If there is a functional relationship between log k, 
and log k2 there must be definite physical reasons for 
assuming that this reiationship is linear, and establishing a 
good straight line fit in a purely statistical way is not 
sufficient. If a true linear relationship does exist then only 
one line can be fitted in each plane, as compared with the 
two of the first case, and it is not correct to use the 
methods employed in (i) for establishing regression lines. 
A full discussion of this topic can be found in Kendall and 
Stuart? However, as we shall show later, the fitting of 
such lines in the log& vs log k2 plane or in the E vs log A 
plane is neither necessary nor desirable. 

In trying to establish the relationship between log kl 
and log kz and between E and log A, attention must be 
paid to the order in which the points representing the 
members of the reacting series occur. If T2fTt is near to 
unity, then, for example, the points in log k, vs log kt 
could lie on a parabola of small latus rectum, and yet a 
good straight line fit could be established in a purely 
statistical way. 

We suggest that the correct approach to establishing a 
relationship in the E vs tog A plane is as follows. 

Assuming that E and log A do not vary with 
temperature then, for any member of the reacting series, 
E and log A remain constant for the values of log kl and 
log k2 obtained zlt temperatures T, and T2. By ranking the 
members of the reacting series according to some physical 
characteristic, an attempt can be made to fit smooth 
curves in the log k, vs tog k2 and E vs log A planes, 
through the points in the order in which they are ranked. 
Hence the following steps should be carried out. 

(i) Rank the members of the series according to 
ascending values of a physical characteristic, x. 

(ii) Plot points in the log k, vs x and log k2 vs x planes. 
(iii) Fit smooth curves through the points in each of the 

two planes. Preferably mathematic~ly but if the points 
are few then graphically. 

(iv) Plot both the actual and fitted points in the log kl vs 
log k2 and in the E vs log A planes, and hence the fitted 
curves. 

The Btted curves thus obtained should be looked at as a 
set. Although this may not lead to an exact mathematical 
de&Non af the curve in the E vs tog A plane, it will 
certainly give a much better guide to its gene& shape 
than tiuything that has so far been achieved. 

We turn now, in the light of these considerations to a 
few examples which illustrate the application of this 
approach. These examples were chosen from the litera- 
ture and they are controver$al, for their enthalpyentropy 
~Iationships have variously b&en reported as linear, 
non-linear or non-existent. Although brief comment is 
offered ‘where appropriate, it is not our intention to 
discuss reaction mechanisms in any detail; our object is 
merely to draw attention to what seems to be a more 
general and useful approach to the derivation of 
enthajpyentropy relationships. 

ExAMPLl7.S AND DISCUsSION 

I. Solvolysis of t-butyl chloride in ethanol-water mix- 
tures. 

The specific reaction rates for this example were 
measured by acidimetric analysis of a series of reacting 
mixtures in the coticentration range O-50% ethanol at 0” 
and 25°.‘o~” Although serial rates are reported up to IOO% 
ethanol,“’ the corresponding measured values at 0”” are 
not available for the SO-100% range; moreover, above 
50% ethanol, halide analysis was employed. We have 
therefore confined our study to the O-SO% ethanol 
concentration range, and we have converted perceptage 
concentration to mote fraction water. 

In this example the choice of physical ch~cterist~c (x) 
that defines the sequence of the points is unequivocally 
the concentration variable, and Fig. 1 shows the plotted 
points and the mathematically fitted curve for log k vs 
mole fraction water at 0” and 25”. The curve fitting was 
carried out by l&ast squares approximation to the sets of 
data points according to Forsythe’s” method, using 
o~hogon~ ~lynomi~s. The measure of best fit is as 
described by Forsythe,‘* and for both temperatures the 
lowest order best-fitting polynomial, below order 10, was 
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Fig 1. Mathematically fitted plots of log k us mole fraction water 
for the solvolysis of t-butyl chloride in ethanol-water mixtures at 
0” and 2ST. The diameters of the points are approximately 

proportional to the estimated error. 

found to be of order four. It was worth while to fit the data 
mathematically in this example because of the large 
number of points available, and to show that even 
complicated curves can be fitted well. 

The curve for log k~ vs log /cl (Fig. 2) exhibits the same 
excellent fit, and the transformation of these points and 
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Fig 2. Mathematically fitted plot of log k, us log kz for the 
solvolysis of t-butyi chloride in ethanol-water. The diameters of 

the points represent the approximate estimated error. 

their fitted curve to E vs log A is shown in Fig. 3. We 
conclude, therefore, in agreement with Winstein & 
Fainberg” that the valid enth~py~ntropy relationship of 
this system is a smooth, complex curve. 

Exner’s evaluation of this example is rather different, 
and he considered the whole concentration range of 
O-100% ethanol. In Exner’s view, because of the 
differences between the results obtained by the two 
analytical methods, experimental error is higher than that 
reported by the original authors. On that basis, therefore, 
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Fig 3. Mathematically fitted plot of E us log A for the solvolysis 
of t-butyl chloride in ethanol-water. The dimensions of the crosses 

represent the estimated error. 

he fitted three straight tines to the overall data of log kr vs 
lo8 &Z and then showed that the transformations of these 
are good approximate fits in E vs log A. With respect to 
the data presented here, Exner’s approach calls for two 
fitted straight lines intersecting about 0.85 mole fraction 
water, denoted by the arrows in Figs l-3. It is of course 
feasible that two straight lines, meeting at 0.85 could be 
fitted in the log k, vs x plane and would result in pairs of 
straight lines in the other planes, but there is no 
justification for so doing unless strong physical reasons 
indicate that this should be so. The concentration range 
discussed here refers only to acidimetrically measured 
rates and the error is small. In our view only approx~ate 
linear fits can be established, and these at the expense of 
neglecting pronounced systematic variation about the 
lines, especially in the 0*85-1.00 concentration range. The 
success of Exner’s evaluation of the data is more apparent 
than real. It arises because the physical characteristic 
which defines the sequence of the points in the series is 
wholly uneq~v~~. An app~~mate linear fit in the one 
plane is, therefore, the inevitable consequence of an 
approximate linear fit in the other. 

2. Saponification of halogen-substituted ethyl phenoxy- 
acetates 

The rates for this example were obtained from the 
study by Brown & Newsom” on the hy~oiysis of 
h~ogen-substitute ethyl phenoxyacetates by NaOH in 
98.5 weight per cent aqueous ethanol at P and 30”. In that 
work the authors themselves drew attention to the dif!icul- 
ties they encountered in trying to evaluate their results. It 
is probably for the same underlying reasons that we have 
found it impossible to choose a single physical charac- 
teristic that defines the sequence of members in all three 
series. Nevertheless, by using a simple physical charac- 
teristic, the atomic number of the halogen substituent, we 
are able to illustrate our approach with the 2-substituted 
series. Fig 4 shows how log k varies with the halogen 
atomic number at 0” and 30”. Smooth curves can be drawn 
through the points and the resulting curve-graphically 
fitted because of lack of data-in the logkt vs log k2 
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Fig 4. Graphic plots of log k us halogen atomic number for the 
sa~nifi~ation of 2-halogen-substitute ethyl phenoxyacetates in 
alcoholic caustic soda at 0” and 30°C. The vertical lines represent 

the estimated errors. 

plane, which is shown in Fig 5, resembles a parabola. The 
transformation to E vs log A, which is given in Fig 6, 
resembles a straight line of ~mi-infi~t~ extent with 
some points having a 2-1 correspondence. We conclude, 
therefore, that although the distribution of points in E vs 
log A proposed by Brown and Newsom” is correct, it is 
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Fig 5. Graphic plot of log k, as log k2 for the saponification of 
the ‘L-substituted halogen ethyl phenoxyacetates. The crosses 

denote the estimated errors. 

incorrect to relate these points by a best-fitting straight 
line. The difficuhy in defining aa appropriate overall 
physical characteristic for these substances does not 
mean that physical characterization is impossible; it is, 
rather, a confession of ignorance about the detailed 
physical characteristics of these substances. The ioniza- 

This is a technicat description of the “doubling back” type of 
curve depicted in Fig 6. 
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Fig 6. Graphic plot of E us log A for the saponification of the 
2-substitute halogen ethyl phenoxyacetates. The crosses are 

pro~~ion~ to the estimated error. 

tion potentials of the halogen-substituted free acids could 
be more appropriate in this context, but we have been 
unable to locate these in the literature. 

This example shows that the variation of log k with the 
physical characteristic fx) approximates well to a 
parabola and since this type of quadratic dependence 
seems to occur quite frequently in practice (for example, 
Good & Stone”), we now present a general statement of 
the problem, together with its mathematical solution. 

Expressing the variation of log k with the physical 

characteristic (x) we take 

log k, = uj + b,x + c,x2 + cif(x), 

and 

log ki = ai + bzx + czx* t eg(x), (8) 

where the a, b and c’s are al1 distinct constants, c is a 
small quantity and f(x) and g(x) two functions of x of 
order unity in magnitude. This gives 

E = p,[(a, - a*) t (b, - bz)x +(c, - cz)x* 

+ 4(x)- g(x))J, (9) 
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where- 

2*303RT, Tz TI 
p’= T,- T2 ’ p*= T,_ T2’ 

If the relationship between E and log A is linear then 
this requires that there exists two constants, a and j? say, 
such that 

(a,-$a,)+(b,-$b,)x+(cr$2)x2 

+a f(x)-$g(x) ( ) 
=a[(aI-aS+(bI-b2)x+(cI-c2)x2+e(j(x)-g(x))] 

+ 6. (11) 

We now choose a and /l such that the coefficients of x0 
and x’ balance and we conclude that if the remaining 
terms are small then a linear relationship is almost valid. 
The terms in e are small thus we require the coefficient in 
x2 small, that is 

& [(bzc, - b,czXl - Tz/T,)l. (12) 

This expression is small for (1 - TJT,) small if 

(i) (l-2) isnot small 

or 

(ii) (l-2) smalland (1-z) small. 

In the example considered here (I- b,/bl) is not small and 
we can conclude that in such cases the E vs log A 
variation is almost linear. This is veritied by Fig 6. 

When considering the variation of log k, vs log kl it is 
sufficient to approximate expressions (7) and (8) by 

log k, = al t b,x t c,x*, (13) 

log kz = uz + bzx + czx’, (14) 

since E is small and we are not subtracting two almost 
equal quantities. 

Eliminating x from equations (13) and (14) results in the 
relationship 

I Cl b, 

between log kl and log kl. It is observed that this is a 
parabola which in the limiting case when cl = c2 and 
bl = b2 becomes a straight line. The parabolic variation is 
con6rmed by Fig 5. 

3. The jluidity of aqueous electrolytes containing at least 
one positively hydrated ion species 

This example is taken from an evaluation by Good and 
Ingham” of enthalpy-entropy relations in the fluid 
kinetics of positively hydrated aqueous electrolytes. 
Here, the specific reaction rates kl and k2 refer to the 
fluidity in poise-’ (rhes) of the solutions at 25” and 18” 
respectively, and the ranking physical characteristic (x) is 
increasing molal concentration. 

The variation in log k, and log k2 with molahty is shown 
in Fig 7. Although these curves exhibit strong linear 
correlations, the best fit to the data, using the method 
described by Forsythe,‘* is a third order polynomial. The 
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Fig 7. Mathematically fitted plots of log k us molality for the 
fluidity of aqueous lithium chloride at 18” and 25°C. The diameters 
of the points are approximately proportional to the estimated 

error. 

mathematically fitted curve and the experimental points in 
the plane log kl vs log k2 arc given in Fig 8. It is perhaps 
slightly more obvious that this relationship is non-linear, 
but neverthekss the data approximate closely to a 
statisticaUy significant linear correlation. However, when 
this fitted curve is transformed to the E vs log A plane 
(Fig 9), the result is a highly non-linear relationship. Since 
the electrolytes in this group all appear to behave in this 

a,-logk, 

a2 - log k2 

(062 - UlC,)’ 

3~2 log k, -cl log k2)’ 

c2 

(b,cz - bzc,)’ 

b2 

2(b,c2- bzc,)(u,c2- OS,) 
= 0. (15) 
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Eliminating the term in x from equations (16) and (17) 
gives 

b2 log k, - br log kz = a,bz - azb, f a[bzr(x) - b&x)]. 
(18) 

Since c is small this leads to an almost linear relationship 
between log k, and log kz. It now remains to determine the 

g l-SO- 
/ 

relationship between E and log A, the values of which are 
given by 

l 

/ 

E=p,t(a,-a~~+~b,-b~)x+t.(~(x)-~~x))lr (19) 
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Fig 8. Mathematically fitted plot of log k, us log kl for the >I . (20) 
fluidity of aqueous lithium chloride. The points are approximately 

proportional to the estimated error. 
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Fig 9. M~hemati~~iy fitted plot of E us log A for the fluidity of 
aqueous lithium chloride. The crosses denote the estimated errors. 

way, a general statement and mathematical solution is 
presented below. 

In general, for systems whichcdisplay an approximate 
linear relationship in the log k vs x plane, we approximate 
log k, and log kz by 

and 

log k, = al t b,x + W(X), (16) 

al=ual+v, a,-T2/Tta2= w(a)-adtz, 

b, = ubz, bg - T,/T, br = w(bi - b& 

cc = lib, Cl - TX& c2 = w(c, - C2). 

d, = udz, d, - T2ITI d2 = w(d, - 41, 

etc. (25) 
log kt = uz + bzx t M(X), (17) 

where again E is a small quantity, the a and b’s constants 
but this time b, is close to bz and r(x) and s(x) are 
functions of x of order unity in magnitude. 

It is seen that given at, b,, cl,. . . and two of the quantities 
with &ix 2, say a2 and b2, then all other constants with 
suffix 2 are determinable. This, in physical terms, means 
that given a detailed variation of log kl with x and the 

Since TJ’Zi and bdbt arc close to unity then the 
coefficients in the x terms are small and in fact the e term 
could be as large, if not larger, than these terms. Hence no 
simple relationship can, in general, be obtained between E 
and log A, as confirmed by Figs 1, 8 and 9. 

In general the log k vs x relationship will be neither 
linear nor quadratic, but will be of the form 

and 

log k, = at + b,x + c,x’+ d,x' t - * - (21) 

logk2=a2tb2xtcrx2tdrx3t*.. (22) 

In order for both relationships log kt vs log kl and E vs 
log A to be linear then there must exist four constants, 
say u, u, w and z, such that 

and 

logk,=ulogkr+u, (23) 

IogA = wE+z. (24) 

This leads to the following relationships between the 
coefficients in expressions (21) and (22). 
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value of log k2 and d/dx (log kl) at x =0 then the 
variation of log kl for all values of x is determined. If such 
were the case, a physical and not a mathematical reason 
should be sought for the phenomenon. 

Thus we conclude that in general we would expect the 
relationships log k, vs log k2 and E vs log A to be non 
linear but if they are both linear then there should be a 
more thorough investigation of the physical reason for 
this. 

4. The decomposition of 2,2’-azobis-(2-methylpro- 
pionifrile) in various solvents. 

This example refers to the thermal decomposition, 

measured precisely by nitrogen evolution, of 2,2’-azobis- 
(2-methylpropionitrile) in N-methylpropionamide(l), 
propylene carbonateQ), diphenylmethane(3) and N,N- 
dimethylaniline(4) at 66” and 72”. see Petersen, Markgraf 
and Ross.‘~ In this instance we were unable to discover 
any physical characteristic to relate these solvents, but 
nevertheless the criterion of mutual compatibility can be 
used to cast some light on the problem. The original 
authors noted that the activation parameters for this 
reaction in these solvents were virtually collinear (Fig lo), 
but ascribed this result lo errors in AH* and AS*. which 
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Fig 10. Graphically fitted plot of E us log A for the thermal 
decomposition of 2,2’-azobis-(2-methylpropionitrile) in the vari- 
ous solvents. Crosses are dimensionally proportional to the 

estimated errors. 

they discussed in some detail. However, the plot of log k, 
vs log k2 given in Fig II suggests something rather 
different. The error in log k is small and it is highly likely 
that the sequential joining of the points in the same order 
as in E vs log A is justified. According to our criteria, 
therefore, there is probably a non-linear functional 
relationship between E and log A. The parabolic-type 
curve of small latus rectum in log k, vs log k2 becomes 
transformed to one of small curvature in E vs log A. If we 
understand correctly the comments made by Exner’ about 
this example, he believes that this is a valid isokinetic 
relationship, with linearity between enthalpy and entropy, 
and cites the differing linear order of the points in support 
of that contention. By our criteria the incompatible linear 
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Fig I I. Graphically fitted plot of the log k, us log k2 for the 
thermal decomposition of the substance. Crosses are dimension- 

ally proportional 10 the estimated errors. 

order is precisely the reason why the linear fit should be 
rejected. 

CONCLUSIONS 

We have shown here that in order to avoid spurious 
results the physical basis for enthalpyentropy relation- 
ships must be established at the earliest possible stage in 
the evaluation of the data. Thus, if the physical 
characteristic (x) can be identified and the data are 
sufficient, the mathematically fitted plot of log k vs x will 
show the variations that will occur in the log k, vs log kl 
and E vs log A planes. However, even if data are scant, a 
simple graphical plot of log k vs x will often indicate what 
variation should be. expected in the E vs log A plane. 
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